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Polyp Detection via Imbalanced Learning
and Discriminative Feature Learning
Seung-Hwan Bae, Student Member, IEEE, and Kuk-Jin Yoon*, Member, IEEE

Abstract—Recent achievement of the learning-based classi-
fication leads to the noticeable performance improvement in
automatic polyp detection. Here, building large good datasets is
very crucial for learning a reliable detector. However, it is prac-
tically challenging due to the diversity of polyp types, expensive
inspection, and labor-intensive labeling tasks. For this reason, the
polyp datasets usually tend to be imbalanced, i.e., the number
of non-polyp samples is much larger than that of polyp samples,
and learning with those imbalanced datasets results in a detector
biased toward a non-polyp class. In this paper, we propose a data
sampling-based boosting framework to learn an unbiased polyp
detector from the imbalanced datasets. In our learning scheme,
we learn multiple weak classifiers with the datasets rebalanced by
up/down sampling, and generate a polyp detector by combining
them. In addition, for enhancing discriminability between polyps
and non-polyps that have similar appearances, we propose an
effective feature learning method using partial least square anal-
ysis, and use it for learning compact and discriminative features.
Experimental results using challenging datasets show obvious
performance improvement over other detectors. We further
prove effectiveness and usefulness of the proposed methods with
extensive evaluation.

Index Terms—Endoscopy, colonoscopy, computer aided de-
tection (CAD), polyp detection, imbalanced learning, feature
learning, partial least square analysis, medical imaging system.

I. INTRODUCTION

A UTOMATED polyp detection is to find locations and
sizes of polyps in endoscopic or colonoscopic images

automatically. As listed in Table I, many polyp detection
methods [1]–[6] have been developed and achieved the im-
pressive performance improvement based on elegant machine
learning algorithms and well-established features. However,
this problem is still challenging, and frequent failures occur in
many practical situations as in Fig. 1.
The main difficulty of the detection is to handle the diver-

sity of polyp appearance. Indeed, many different types of polyps
exist, and each polyp contains significantly different colors, tex-
tures and shapes as in Fig. 2. In addition, appearance variations
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frequently occur by viewpoint changes and partial occlusions
during endoscopy or colonoscopy.
Therefore, in order to achieve high performance in real ap-

plications, learning with large training datasets containing great
variability of polyp appearances is required. As discussed in [7],
[8], detectors learned with large datasets handling great vari-
ability of object appearances improve detection performance
in general. Building the large datasets, however, is practically
difficult in medical imaging since expensive endoscopy (or
colonoscopy) of patients and labeling by human supervision
are needed. For these reasons, datasets [1]–[3], [5] are not
large enough to cover all the challenges of the polyp detection,
and they are also often imbalanced where a larger number
of non-polyp samples represent a majority (i.e., non-polyp or
negative) class while a small number of polyp samples only
represent a minority (i.e., polyp or positive) class.
In fact, the class distribution, the proportion of samples of

each class in a dataset, plays an important role in a classifica-
tion [10]. Learning with imbalanced sets usually results in bi-
ased classifiers prone to yield higher detection accuracy over a
majority class, but poor accuracy over a minority class1. How-
ever, it is more important to improve the performance for the
minority class for early detection.
In this paper, we tackle this problem of learning detectors

with imbalanced datasets and propose a novel data sampling-
based boosting framework to resolve the problem. The proposed
framework is basically based on Adaboosting and up/down data
sampling. At each round, we collect hard samples, which are
not correctly classified by the preceding classifiers. By up-sam-
pling, we generate synthetic samples for the selected hard sam-
ples of the minority class. We then remove hard samples of the
majority class that surround the minority class samples using
down-sampling. By generating more balanced datasets using
up/down sampling in this manner, we prevent weak classifiers
from biasing toward the majority class.
In addition, we propose discriminative feature learning to

improve the detection performance. In fact, the appearances
of polyp samples and non-polyp samples are quite similar
as shown in Fig. 3. Thus, it is difficult to discriminate them
just using conventional color- and texture-based features2. To
resolve this problem, we learn more compact and discrimina-
tive features by projecting the high-dimensional histogram of
oriented gradient (HOG) features [9] onto the weight matrix
learned by partial least square (PLS) analysis [11]. Based on

1In Section V.D, we provided the performance comparison of both classes.
2Performances of detectors learned by different features are given in Table III

and Fig. 14(a).
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TABLE I
DESCRIPTION OF THE SEGMENTATION- AND PATCH-BASED POLYP DETECTION METHODS

Fig. 1. Polyp detection results using the HOG and SVM detector [9]. False
positive detections (top) and missing (bottom) frequently occur when applying
the conventional detector.

the proposed imbalanced learning and discriminative feature
learning, we build an ensemble framework for polyp detection
as shown in Fig. 4.
The rest of the paper is organized as follows. We first discuss

related works in Section II. Then, we propose feature learning
and imbalanced learning for polyp detection in Sections III and
IV, respectively. We provide some experimental results in
Section V, and discuss the difference of Adaboost and cas-
cade schemes in Section VI. We finally conclude the paper in
Section VII.

II. RELATED WORKS

We discuss some previous works on polyp detection and im-
balanced learning, which are related to our study.

A. Polyp Detection
In recent years, automated polyp detection has been ex-

tensively studied for reducing costs and time of colonoscopy
and endoscopy. Since the task has many difficulties owing to
the diversity of polyp types, appearance variations by camera
viewpoint changes, similar colors and textures between polyps
and non-polyps, and severe occlusions, a large number of
polyp detection methods have been proposed using elegant
machine learning and well-established features to deal with the
difficulties.
For distinguishing abnormal regions (containing polyps or ul-

cers) from normal regions, a segmentation-based approach has
flourished. It usually exploits color and/or texture differences
between polyp regions and their surrounding regions. In [3],
[12], polyp regions are iteratively segmented based on color and
watershed segmentations. Bernal et al. [6] present a polyp re-
gion descriptor using the depth of a valleys image. However,
these methods are unsuitable for real-time applications because

they need expensive computation for the iterative segmentation
procedures.
On the other hand, a patch-based approach learns a classifier

(or detector) beforehand and then detects abnormal regions
for the test image using the learned classifier. For improving
discriminability, the color wavelet covariance [1], dimen-
sion-reduced features using principal component analysis
(PCA) [2], MPEG-7 descriptors [4], and the support vector
machine (SVM)-based polyp detector with high-dimensional
features [13] have been proposed. These features are exploited
for the tasks of various medical symptom detections such as
bleeding, ulcers, and polyps. Since these patch-based methods
need to learn detectors with training sets beforehand, their
detection results highly rely on the quality of training datasets.
Actually, they tend to generate biased classifiers from imbal-
anced datasets since the imbalanced data distribution problem
between different classes is not appropriately treated.
We summarize the performance of the previous studies for

polyp detection in Table I. Here, it should be noted that there
is a discrepancy between the performance shown in Table I and
the expected performance in real applications. The reason is that
most of the works [1]–[5] evaluate the performance using a per-
window measure rather than a per-image measure. However, as
discussed in [14], the per-window measure typically leads to
higher sensitivity and specificity since detections with incorrect
scales or positions are not counted in the evaluation after non-
maximal suppression or other post-processing.
In this paper, we propose a patch-based method for polyp de-

tection. To effectively resolve the imbalanced learning problem,
we learn a polyp detector based on a novel ensemble framework
with feature learning and imbalanced learning. In addition, we
discuss the discrepancy of polyp detection performance using
different measures in Section V.D, and then we rigorously eval-
uate the proposed and existing methods using the more strict
per-image measure in Sections V.E and V.F.

B. Imbalanced Learning

Previous methods3 on imbalanced learning can be roughly
categorized into two groups: reweighting-based and resam-
pling-based approaches. The former enforces the classifier
to be less biased toward the majority class by adaptively
re-weighting the samples of different classes in consideration
of the class importance. Here, since it is required to reduce
critical false negatives rather than false positives in many
cases, the cost for false negatives is higher than that for false
positive in general. To this end, some cost-sensitive boosting
(CSB) algorithms such as AdaBoost [16], CSB1/CSB2 [17],

3For more detailed review of imbalanced learning, refer to [10], [15].
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Fig. 2. (a)–(h): The diversity of polyp types: colors, textures and shapes of the polyps are different from each other. (a) Normal rectal tissue, (b) Inflammatory
bowel disease (Ulcerative Colitis: UC), (c) Inflammatory bowel disease (Crohn's Disease: CD), (d) Tuberculosis (TB), (e) Rectal carcinoid, (f) Early colorectal
cancer, (g) Progression of colonrectal cancer, (h) Colorectal other-related disease.

and AdaC1/AdaC2/AdaC3 [18] have been presented. Recently,
the optimal cost-sensitive boosting [19] has been proposed by
modeling and minimizing expected and empirical losses.
On the other hand, the latter approach concentrates on rebal-

ancing the imbalanced distribution using resampling methods.
To safely remove noisy and redundant samples belonging to
the majority class, the one-sided selection method has been
proposed [20]. SMOTE [21] and its extension [22] have
been also proposed for generating new samples synthetically
with the samples in a minority class. Guo [23] designs the
boosting-based imbalanced learning algorithm with data gen-
eration. As discussed in [10], these resampling-based methods
are usually independent of the base classifier.
Recently, in an attempt to promote the performance of the

imbalanced classification, asymmetric classifiers have been
developed for binary [24], [25] and multi-class classifications
[26], [27]. In particular, PLS-based classifiers [25]–[27] show
the high performance for skewed datasets. The main reason
is that learning a PLS-based classifier is only related to an
eigen-decomposition problem of the between-class scatter ma-
trix without consideration of the number of data in each class
[24], [25]. Therefore, it is less affected by the class distribution.
Inspired by recent advances in imbalanced learning, we build

a novel ensemble framework, named data sampling-based
boosting. Compared to previous works, the proposed frame-
work has two obvious benefits. Firstly, our framework is an
ensemble of the existing powerful imbalanced learning methods
such as Adaboost, resampling, and PLS. By combining them,
we can train an unbiased polyp detector even under extremely
skewed distribution, and achieve the better detection perfor-
mance than other imbalanced learning methods as shown in
Table III. Secondly, different from [25]–[27], we exploit the
PLS method for feature learning and dimension reduction
rather than directly employ it as a classifier. As a result, we
can greatly reduce the complexity caused by data re-sampling,
classifier learning, and classification since we perform all the
tasks with the low-dimensional features.
In terms of experimental validation, Galar et al. [10] pointed

out that the existing imbalanced learning methods have been
validated with relatively small-sized datasets [16], [20], [21]

Fig. 3. Similar colors and textures between polyps (left) and non-polyps (right)
samples.

or the medical diagnosis dataset [18], [23], [25] with fixed and
low-dimensional feature vectors. This brings the performance of
the previous learning methods into question: can those methods
work successfully for imbalanced large datasets obtained from
real medical images? We think that the experimental results
of the proposed and other imbalanced learning methods can
suggest the answer to the question and worthy conclusion for
medical imaging detection and classification with imbalanced
datasets.

III. DISCRIMINATIVE COMPACT FEATURE LEARNING
In this section, we provide the details of proposed feature

learning using PLS analysis.

A. Feature Extraction
We use the HOG feature [9] for describing samples due to its

discrimination power and robustness over noises or illumination
changes [28], [29].
Given normalized image patches with resolution

containing polyps or non-polyps, HOG features [9] can be
extracted for each image. The first step of HOG extraction is to
compute gradients of pixels by convolving the image
with a filter and its transpose. We then compute the
magnitude and orientation of the gradient

. At each pixel, the gradient orientation is discretized
into one of values within ranges of or . The
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Fig. 4. A data sampling-based boosting framework for learning a polyp detector from imbalanced datasets.

contrast insensitive and contrast sensitive values are
computed with the undirected and directed gradients as follows:

(1)

where means a round function.
A sparse orientation histogram

with channels is generated with the discretized orientation and
its magnitude.

(2)

The sparse histogram at each pixel can be considered as a
pixel-based feature map.We aggregate within a square
cell, where each cell region is determined by the parameter
representing the side length of a square area. A cell-based fea-
ture vector (i.e., gradient histogram) is constructed by
aggregating the pixel-based features, where

and . In general, this aggre-
gation not only improves the robustness to small deformation
but also reduces the size of a feature map [29]. When aggre-
gating the pixel-based features, we further exploit the soft bin-
ning approach [9], [29] using trilinear interpolation for reducing
the aliasing effect. Thus, instead of directly mapping each pixel

into the corresponding cell and , we make
each pixel contribute to the neighboring four cells for histogram
smoothing.
Let define a square block with 2 2 cells and the histograms

of overlapped cells between blocks are normalized with gradient
energies of the blocks4. This normalization process enhances

4A cell of each block is overlapped with its four neighborhood blocks. There-
fore, the size of the overlapped region between four blocks is the same as the
cell size . Given cells, we obtain blocks.
For example, if the sizes of an image patch and a cell are
and , we obtain cells and 15 15 overlapping blocks
since and .

invariance to the illumination changes since the effect of gain
(or scaling) are removed. In the similar manner as [9], [29], we
utilize four normalization factors with as

(3)

Each factor evaluates the gradient energy (i.e., the
sum of the squares of the gradient histogram components) in a
block containing the cell .
For building a HOG map , we concatenate different

normalization results for , normalized by the gradient en-
ergies of four blocks containing the cell :

(4)

where a truncation function with the lower bound is
used for removing noisy features.
In the case of using 9 orientation features , we can

extract a commonly used 36-dimensional HOG feature for each
cell. However, for improving the detection performance as dis-
cussed in [29], we extract the 31-dimensional HOG feature for
each cell instead of using the original HOG feature [9]. Themain
difference of both features is that the original one is a 36-dimen-
sional feature with undirected or directed gradients using four
normalization factors as in (4), while its variant is a combined
feature with both directed gradients (18 dimensions) and undi-
rected gradients (9 dimensions) as well as gradient energy fea-
tures of the four neighboring blocks (4 dimensions)5.
Fig. 5(a)–(d) show (positive and negative) samples and

extracted HOG feature maps. Although colors and textures of
polyps are different from each other in Fig. 5(a), their HOG

5In our experiment, we found that the variant of the HOG feature significantly
improves the performance of polyp detection as in Table III.
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Fig. 5. Polyp and non-polyp patches (left) and their HOG feature maps (right). (a) Positive training samples (polyp patches). (b) Extracted HOG features from
positive training samples in (a). (c) Negative training samples (non-polyp patches). (d) Extracted HOG features from negative training samples in (c). (e) False
positive samples that do not contain polyps. (f) Extracted HOG features from false positive samples in (e).

features usually have spherical shapes as shown in Fig. 5(b).
On the other hand, Fig. 5(c) shows negative training samples
consisting of non-polyps (i.e., normal tissues, colon holes,
polyp fragments, medical equipments and patient names). From
Fig. 5(d), we know that their HOG shapes are non-spherical
and different from the polyp ones. In Fig. 5(e), we further show
false positive samples when applying the conventional HOG
and SVM detector [9].
In real cases, these false positives are frequently caused

by colon holes, specular reflection, colon wrinkles and polyp
fragments. Note that the HOG shapes of false positives in
Fig. 5(f) are (approximately) spherical and rather similar to
HOG shapes of polyps in Fig. 5(b). It means the challenge of
discriminating between polyps and false positives using the
HOG feature. In addition, HOG is a very high-dimensional
feature. In general, this high dimensionality leads to models
with lots of parameters and increases complexities of learning
and detecting phases. To resolve these problems, we propose a
feature learning method using PLS in next section.

B. Partial Least Square Analysis

PLS analysis models relations between sets of observed vari-
ables with latent variables. The common assumption is that ob-
served data is generated by the system and process driven by
a few number of latent variables. It aims at creating orthog-
onal score vectors (or latent vectors) by maximizing the covari-
ance between different variable sets. Due to its effectiveness,
PLS analysis has been exploited for many other applications
[30]–[34]. We briefly introduce the main ideas and process of
PLS analysis. For more details of PLS analysis, refer to [11],
[30].
We denote a -dimensional space of variables and a -di-

mensional space of other variables as and .
Given data samples of each variable, we denote matrices of
the two zero-mean variables as and , re-
spectively. For preserving variations of each matrix and maxi-

mizing correlation between both variables, PLS decomposes the
matrices as follows:

(5)

where and are matrices of the extracted latent
vectors, the matrix and the matrix represent
the loadings, and the matrix and the matrix
are residuals. Then, the PLSmethod finds weigh vectors and

maximizing the covariance between the two latent vectors as
follows:

(6)

where and are the first columns of and
, respectively.
As discussed in [11], [30], the above optimization problem

can be reformulated as the following eigenproblem:

(7)

Once we obtain and by solving (7), other weight vec-
tors for the two variables are iteratively evaluated using the non-
linear iterative partial least squares (NIPALS) algorithm [11]:
• The score vectors and are evaluated by
and , where and and

when .
• The vectors of loading and are computed by

and .
• The sample data matrices and are deflated by

and .
• The new weight vectors and

of the deflated matrices are com-
puted and normalized to be and .
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Fig. 6. Weight vectors of HOG features [9] using PLS. From left to right, first learned weight vectors are shown. Each weight vector is displayed as 9 by 4 matrix.
Since we use 9 orientation bins and 4 normalization factors for extracting HOG features, each row corresponds to one of the orientation bins and each column to
one of the normalization factors.

We repeat the above procedure until sets of the weight vec-
tors, and , are
obtained. In next section, we apply the PLS analysis for learning
features for polyp detection.

C. Discriminative and Compact Space Learning
For better discrimination between polyps and non-polyps, we

learn a discriminative and compact polyp feature using the PLS
method. With the same notations as in Section III.B, we denote
a set of -dimensional HOG feature vectors from polyp and
non-polyp images as , and their labels , where
each label . We can obtain and with the zero
mean by subtracting and with their means, and .We then
decompose and into the PLS form as (5).
Note that has only one variable. Therefore, the loadings

and the residuals are denoted as vectors and ,
respectively. It also means to be a scalar due to
and . As a result, we only evaluate latent vectors of
HOG features since and . As provided in
previous Section III.B, we iteratively compute weight vectors

using the NIPALS algorithm. In the first iteration, we can
compute due to where .
In the following -th iteration , we obtain the deflated
matrix and the weight vector

.
Fig. 6 shows the learned weight vectors and values using

PLS analysis, where higher weights (more importance) are
marked with white but lower weights with black. Note that top
weight vectors are (approximately) constant along each row
and column of the matrix representation. As proved in [29],
these results indicate that the top weight vectors can be con-
sidered as a two-dimensional separable Fourier basis because
each weight vector seems like a sine and cosine function of
one variable. Furthermore, the appearance of the Fourier basis
proves the two-dimensional rotation invariance of the learned
weight vectors.
Once the weight matrix is learned, we project each

feature vector onto the for generating the compact
and discriminative feature . As a result, we can ob-
tain the reduced feature vector and employ it in the
classification.
In a similar manner, PCA is also used as a subspace learning

method. However, PCA is different from PLS in some senses.
When creating orthogonal weight vectors, PLS considers the
covariance of feature vectors and class labels , but PCA
only considers the variances of the features. In addition, PLS is
less affected by the class distribution [24], [25] since learning
subspaces using PLS is only related to the eigen-decomposition

Fig. 7. Feature distribution after applying PCA (a) and PLS analysis (b).

problem of the between-class scatter matrix without consider-
ation of the number of data in each class (cf. PCA). Thus, the
former is much more appropriate for polyp detection since it
is more capable of distinguishing class variability and handling
the imbalanced dataset. Fig. 7 shows the first two-dimensional
components after the dimension reduction using PCA and PLS.
It clearly shows that polyps and non-polyps are more separated
by PLS rather than by PCA.
LDA also generates discriminative subspaces for distin-

guishing different class samples similar to PLS. However, LDA
is not suitable for the dimension reduction of high-dimensional
features since it can only produce projections, where is
the number of classes. In addition, the covariances cannot be
full rank and the weight vectors cannot be extracted when the
feature dimension exceeds the amount of training samples.

IV. DATA SAMPLING BASED BOOSTING FOR
IMBALANCED LEARNING

In this section, we present re-sampling methods for balancing
imbalanced datasets and a data sampling-based boosting frame-
work based on the proposed data sampling.

A. Up-Sampling: Synthetic Sample Generation

Even though the discriminative features learned by PLS
can improve the classification performance with imbalanced
datasets, it is not enough to fully consider the imbalance
problem. To deal with the imbalance problem more appropri-
ately, we also introduce a method to generate synthetic samples
from given training samples. Here, although our method can
generate synthetic samples for both classes, samples of the
polyp class are only considered for balancing datasets. In
addition, it is worthy of notice that, inspired by the SMOTE
algorithm [21], we generate samples in the feature space rather
than the data space since generating synthetic images is much
more computationally expensive.
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Fig. 8. Feature distribution before (a) and after (b) up-sampling.

For balancing an imbalanced dataset, up-sampling generates
synthetic polyp samples from real polyp samples and their
neighbors, which are determined by a -nearest neighbor
algorithm. Depending on the amount of up-sampling, some
neighbors among the -nearest neighbors are randomly se-
lected. When the number of real samples is 100 and the
amount of up-sampling needed is 300%, 300 synthetic samples
are generated from the randomly chosen samples and their
neighbors. Given one sample and its neighbors are provided,
synthetic polyp samples are generated as follows: (i) calculate
a difference between each feature vector element of the sample
and one of its nearest neighbors, (ii) multiply the difference by
a random number between 0 and 1, and (iii) add it to the feature
vector element under consideration. This steps are performed
until all feature elements are computed. The detailed up-sam-
pling algorithm for generating synthetic samples is presented
in Algorithm 1.
Fig. 8 shows sample distributions of polyp and non-polyp

classes before and after up-sampling. We can see that the region
of the polyp class is relatively expanded. This up-sampling al-
lows us to create larger and less specific decision regions when
learning polyp classifiers

B. Down-Sampling: Noisy Sample Elimination
Another simple way for re-balancing datasets is to elimi-

nate some unimportant samples in the non-polyp class. In some
cases, abundant majority class samples in an imbalanced dataset
make classification more difficult. For instance, assume that
polyp samples are surrounded by non-polyp samples. Then, the
non-polyp ones can be the nearest neighbors of polyp samples.
Under this circumstance, a classifier is likely to be biased to
the non-polyp class in order to minimize the classification error.
Many polyp samples can be then misclassified. To address this

problem, we just remove some portion of non-polyp samples
with the random selection.
This simple way, however, is likely to remove non-polyps

needed to be kept for correct classification (e.g., non-polyps to
be support vectors in SVM). For removing noisy non-polyps
while keeping important ones, we investigate Tomek links [20]
within training samples, which can be defined as
Definition 1: Consider two samples, and , with different

labels, and denote their distance as . The pair
is then defined as a Tomek link if no sample exists such that

or .
We consider samples participating in Tomek links as noisy

samples and remove them from the original training set since
they are not informative in learning at all. However, finding
Tomek linked pairs for whole samples is an expensive and
time-consuming process. Therefore, we first classify the orig-
inal set using 1-nearest neighbor (NN) classification with all
minority class samples and one randomly selected majority
class samples. Then, we only consider the linked pairs between
all minority class samples and misclassified majority class
samples. The detailed down-sampling procedures are given in
Algorithm 2.
Fig. 9 demonstrates the results of the down-sampling for the

polyp dataset used for our experiments. We can see that our
down sampling removes noisy non-polyp samples, which are
too close to polyp ones, while keeping crucial samples around
the class boundary. Thus, the dataset becomes more balanced
after down-sampling without loss of information.
Note that the amount of the down-sampling highly relies on

the data distribution of classes and it is automatically deter-
mined by Tomek-linked pairs. When the polyp and non-polyp
samples are closely distributed, the large amount of non-polyp
samples is down-sampled. On the other hand, only the small
amount of non-polyp samples is down-sampled when the distri-
butions are well separated.

C. Data Sampling-Based Boosting

To cover the diversity of polyp appearances with imbalanced
polyp datasets, we design a data sampling-based boosting
framework by combining the proposed feature learning and
data sampling with the AdaBoost.M1 algorithm [35], [36].
Given a training dataset with image

patches (i.e., learned features using PLS as discussed in
Section III.C) and labels , we aim to learn
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Fig. 9. Down-sampling results: (a) original sample distribution, (b) distribution after 1-NN classification (c) Tomek-linked pairs (d) distribution after removing
non-polyps participating in Tomek-links for 5 iterations.

multiple weak classifiers. At each training round , we
collect hard samples6 in , which are selected from the sample
distribution updated by the classification results of the
preceding weak classifiers7.
We re-balance the dataset using up/down sampling: The

up-sampling generates synthetic samples from the hard samples
of the polyp class, whereas the down-sampling removes hard
samples of the non-polyp class when their Tomek link pairs
are polyps. A classifier is then trained with the re-balanced
dataset. The classification error of is evaluated with
the training samples as , and the
classifier is accepted as a weak classifier only when .
Once a weight of the learned classifier is evaluated by

, the sample distribution is updated as

(8)

where is a normalization factor to make
a proper distribution. The updated distribution ensures

that hard samples misclassified by the preceding classifiers are
more likely to be selected for the subsequent weak classifier
learning. These procedures are repeated during iterations.
As a result, polyp classifiers and their weight
matrices are learned.
Given a test feature , we obtain the final score with

the learned and based on weight voting:

(9)

The pseudo code for learning a polyp detector based on the
proposed scheme is provided in Algorithm 3.

V. EXPERIMENTS

As given in Algorithm 3, the proposed polyp detector has
been implemented in MATLAB. More detailed explanation of
the proposed detector is given in Section V.A. The evaluation
metrics and polyp datasets for performance evaluation are dis-
cussed in Sections V.B and V.C. We first show the performance
discrepancy by exploiting different evaluation measures (i.e.,

6In our experiment, the hard samples are mainly extracted from segments of
polyps, colon wrinkles, and holes that have similar appearances with polyps as
shown in Fig. 5(e).

7When , the initial sample distribution for samples is
.

per-window and per-image measure) in Section V.D. Using the
more strict per-image measure, we compare the performance
of the proposed detector with other detectors in Section V.E.
We then investigate how the proposed methods (i.e., feature
learning and up/down sampling) affect the overall performance
of our detector in Section V.F.

A. Implementation
We have implemented polyp detectors as provided in Al-

gorithm 3. From polyp datasets described in Section V.C, we
first collect positive and negative training samples (i.e., image
patches). As shown in Fig. 5, the positive patches are extracted
to be contained with polyps using the ground truth while the
negative patches are randomly extracted in images but not too
much overlapped with polyps8.
We resize the different-sized image patches to 128 128

(pixels), and then extract 31-dimensional HOG features for
each cell in the resized patches as discussed in Section III.A9.
The cell size and the number of undirected orientation bins
are set to and . As a result, we can extract a

8The results with different amounts of overlap areas are provided in
Fig. 14(c).

9In our implementation, we use the code [37] open to the public.
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Fig. 10. Sample patches in our own datasets. We construct our own polyp datasets from 146 endoscopic videos of 141 patients.

1984-dimensional feature for each patch by concatenating
31-dimensional histograms of the 64 cells10.
Given the HOG features and the corresponding labels (in-

dicating a polyp or not), we learn PLS weight vectors as de-
scribed in Section III.C. In our experiment, we learn a weight
matrix (1984 7) and then project the high-dimensional HOG
features onto the weight matrix. As a result, we can obtain the
7-dimensional features and use the dimension-reduced features
for training and testing11. For ensemble learning, we use a linear
SVM as a weak classifier. The number of training rounds
is set to 10.
For detecting various sizes of polyps, we build the image

pyramid with 7 scale levels and extract a HOG feature map at
each level. To determine the scaling factor of each level, we
analyze the minimum and maximum sizes of polyps in endo-
scopic images. We found out the minimum and maximum sizes
of them are almost 100 100 and 320 320 (pixels). Based on
this analysis, we determine the 7 scaling factors from 0.4 to 1.0.

B. Evaluation Metric

We evaluate the detection performance using the per-image
measure [14]. Given detection boxes (with detection
scores) and ground truth boxes , we consider two boxes
as matched if the ratio of an overlap area over an union of them
exceeds 0.5: .
When two or more boxes are matched with one , we
select the detection with the highest score. While the matched

is counted as true positives , unmatched
counted as false positives and unmatched as false
negatives (or missed detections). We then plot the miss
rate against the false positive per image in log-log
scale by changing the threshold on detection scores. Here,
lower curves indicate better performance.
For more comparisons, we further use the following metrics

commonly used for detection performance evaluation:
Precision: The number of correctly matched detec-

tions (TP) divided by the total number of output detections,
.

10When using the commonly used cell size , a 7936-dimensional HOG
feature can be extracted by concatenating 31-dimensional features of 256 cells.
However, from the extensive evaluation, we found that using the low-dimen-
sional HOG feature improves the detection speed without performance degra-
dation as proved in Table III.

11We determine the dimension of PLS from the performance evaluation
shown in Fig. 14(b).

Recall: The number of correctly matched detections (TP)
divided by the total number of detections in ground truth,

.
We also compute an area under the precision-recall (PR)

curve, where the larger area under the curve (AUC) means
better performance.

C. Polyp Dataset

We used the open CVC-ColonDB [6] containing 379 polyp
images with 500 574 pixel resolution captured in a colono-
scope. All the images contain polyps, and the central potions
of the images are cropped to remove black borders. In order to
increase variability of the polyp appearances, polyp images are
captured at different points of views. However, the diversity of
polyp types is limited since the dataset only contains 15 different
polyps.
Since the dataset size is rather small, we created our own

polyp dataset. From 146 endoscopic videos of the 141 patients,
we captured 2365 images with 520 540 pixel resolution and
removed 1102 images captured in similar frames. Therefore,
our dataset consists of 1263 images. Since our work is focused
on evaluating detection performance, each image could contain
a polyp or not. Figs. 10 and 15 show some examples in the
dataset. We observe that the dataset contains many challenges;
diversity of polyp types, appearance variability due to viewpoint
changes, occlusions by other polyps or medical equipments, and
illumination changes by specular reflection.

D. Evaluation Using Per-Window and Per-Image Measures

To show the discrepancy of detection performance when
using different evaluation measures, we evaluate the detection
performance of each class using the proposed detector12. As
described in [14], the per-window measure evaluates a detector
by classifying cropped windows (with/without interesting
objects), whereas the per-image measure evaluates it by con-
sidering overlapped areas between detection and ground truth
boxes.
For the per-window evaluation, we collected 1000 polyp

patches and 100 000 non-polyp patches from our polyp dataset.
Based on the 5-fold cross-validation, we trained and tested

12This detector was implemented using Algorithm 3 without up/down sam-
pling to clearly see the performance discrepancy.
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Fig. 11. (a)–(b): Using different measures, precision and recall scores for an
imbalanced polyp dataset are evaluated. (a) Per-windowmeasure, (b) Per-image
measure.

a detector to evaluate precision and recall curves for image
patches of both classes as shown in Fig. 11(a).
For 1000 polyp images, we also evaluate the performance

using the per-image measure based on the 5-fold cross-valida-
tion. We collected 100 non-polyp image patches in each image
for training. After non-maximal suppression, we determined
the areas (or boxes) of polyps for the 7-scaled image pyramid.
Fig. 11(b) demonstrates precision and recall curves of both
classes by matching the detection boxes with ground truth
boxes as provided in Section V.B.
Although it achieves high performance for both classes for

the per-window evaluation as in Fig. 11(a), the performance
for the minority class falls far behind that for the majority
class for the per-image evaluation as shown in Fig. 11(b).
The reason is that the per-window measure typically leads to
higher scores since detections with incorrect scales or positions
are not counted after non-maximal suppression or other post
processing. Therefore, we evaluate the performance of the
polyp detectors using the more strict per-image measure in the
next sections.

E. Comparison With Other Detectors
Even though many methods reported the performance as in

Table I, it is not appropriate to compare our detector with them
since they used their own datasets (not available to the public)
and the per-window measure for evaluation.
Since [6] evaluated the performance using the per-image

measure and opened the CVC colon dataset to the public, we
compared our detector with [6]. However, it is not reasonable
to directly compare our method with [6] since both methods are
based on different approaches (i.e., ours: patch-based approach,
[6]: segmentation-based approach).
To compare both methods, in a similar manner to [6]13, we

investigate whether the maximum score points fall inside the
polyp mask (as shown in Fig. 12) after non-maximal suppres-
sion of the confidence score map of the image pyramid. We con-
sider the point inside and outside of the mask as and .
When any point is not inside the mask, we consider it as .
We also compute the precision, recall, PR-AUC, and speed of
the detector. For a fair comparison, we divided the 1263 im-
ages of our dataset into 5 subsets (consisting of roughly 250 im-
ages) and trained 5 detectors for each subset. Subsequently, we
evaluated each performance for the first 300 frames of the CVC

13Bernal et al. [6] investigate whether the global maximum of the energy map
falls inside the polyp region or not.

dataset and provide the performance of the detector with the
highest PR-AUC score in Table III. Note that different datasets
were used for training (i.e., our polyp dataset) and testing (i.e.,
CVC-colon dataset) separately, and for testing we only used the
polyp samples that had not been used for training to avoid per-
formance bias.
For more comparisons, we have implemented a variety

of polyp detectors based on different features and imbal-
anced learning algorithms, and compared their performance
in Table III. Since the detector performance is affected by
changing the detection score threshold and the suppression
window size , we provide the optimal
parameters of each detector in the last column of Table III.
We also report the number of the trained weak classifiers
for boosting, and the best cost ratio of the minority class
to the majority class of cost-sensitive boosting algorithms
(AdaC1-AdaC3) [18]. Table II shows the range of the parameter
value and its interval used for evaluation.
1) Evaluation Using Different Features: In Table III.A, we

compare the detection performance using the same classifier but
different features: when extracting the color histogram (A2),
local binary pattern (LBP) [38] (A3), original HOG [9] (A4),
and the variant of HOG (VHOG) [29] (A5-A6), we can extract
24-, 58-, 36- and 31-dimensional features for each cell with
the size , respectively. Using the same cell size
as [9], we extracted 9216-dimensional HOG and 7936-dimen-
sional VHOG by concatenating all histograms of 256 cells. We
further extracted the color histogram, LPB, and VHOG with
1536, 3712, and 1984 dimension using . When ex-
tracting these features, we exploited the integral histogram tech-
nique [39] to accelerate detection process. In addition, we ex-
tracted the color wavelet covariance features (A1) with 72 di-
mension [1]. We learned the compressed VHOG-PCA (A8) and
VHOG-PLS (A7 and A9) features by projecting the VHOG onto
PCA and PLS matrices, respectively.
We confirm that the VHOG (A6) greatly improves the metric

scores, compared to other features (A1-A4). Note that original
HOG [9] (A4) using only the undirected gradient or directed
gradient is not suitable for polyp detections. In addition, ex-
ploiting the large cell size is more effective rather
than using the small cell size when comparing (A5) and
(A6) results. Using the proposed feature learning (A9), we can
obtain the best results in terms of both detection performance
and complexity.
2) Evaluation Using Imbalanced Learning Algorithm:

Tables III.B and III.C show the quantitative comparison results
of detectors using different imbalanced learning methods.
Based on the Adaboost scheme in Algorithm 3, we implemented
the following detectors using resampling-based imbalanced
learning methods in Table III.B:
• SVM: Single linear SVM classifier;
• ESM: Ensemble classifier without data-sampling;
• ESM-DW: Ensemble classifier with down-sampling only;
• ESM-UP: Ensemble classifier with up-sampling only;
• ESM-UP-DW: Ensemble classifier with up/down sam-
pling,

where the amount of the up-sampling is set to for
all the detectors using the proposed up-sampling. As mentioned
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Fig. 12. For the CVC-Colon dataset, ground truth and detection regions of the VHOG [29]-SVM (A6) and the proposed (B7) detectors are depicted. (a) Accurately
detected polyps by both detectors. (b) Inaccurately detected polyps by the VHOG [29]-SVM (A6) detector.

TABLE II
PARAMETERS USED FOR EVALUATION

in Section IV.B, the amount of down-sampling is automatically
determined by the Tomek-linked pairs but it deepens on the data
distribution14. To show the effect of the proposed data sampling,
we further implemented a detector based on random sampling:
RDW randomly selects samples of the majority class and re-
move them, whereas RUP randomly selects samples of the mi-
nority class and copy them. In RUP, the amount of up-sampling
is set to 200% as used in the proposed up-sampling. Using RDW
we make the sample ratio between both classes classes 1.
In addition, we evaluated the detectors using reweighting-

based imbalanced learning in Table III.C. Their common
way is to assign the higher weights to the samples of
the minority class for balancing the dataset. To this end,
in ESM-Weighting, we multiply the weight of each mi-
nority sample by , and
make the total sample weight of both classes the same (i.e.,

). By inserting the cost item
into the weight update formula of Adaboost with different

ways, we implemented three cost-sensitive boosting [18]:
AdaC1, AdaC2 and AdaC3.
From the results in Tables III.B and III.C, we confirm that the

performance of the detectors using the proposed data sampling
(B5-B7) is superior to that of other detectors without sampling
(B1) and with random sampling (B2-B4). In particular, we can

14In our experiment, the means of the removed samples are almost 1.19%,
1.65% and 5.97% at each iteration when using VHOG-PLS, VHOG-PCA, and
VHOG, respectively.

see that the random up/down sampling degrades the detection
performance from the scores of (B1) and (B2-B4). Compared
to other reweighting-based detectors (C1-C4), the proposed de-
tector (B7) shows much better performance in terms of all the
metrics. Furthermore, the proposed detector (B7) greatly im-
proves the precision rate while producing a similar recall rate,
compared to the segmentation-based detector [6]. Notably, the
speed of our detector is roughly 30 times faster than [6]. The
performance improvement proves the effectiveness and robust-
ness of the proposed polyp detector.
Fig. 12 shows detection results using the VHOG [29]-SVM

(A6) and the proposed detector (B7). We further illustrate
ground truth regions of polyps for the better comparison. As
shown in Fig. 12(a), both detectors can successfully detect loca-
tions and sizes of polyps in endoscopic images. However, false
detections are occurred by the VHOG [29]-SVM (A6) when
specular reflection by camera lights exists, polyps are occluded,
and shapes of polyps are nonspherical as in Fig. 12(b). On
the other hand, the proposed detector (B7) produces accurate
detection results even in such cases.

F. Evaluation of Proposed Methods

For verifying the effect of the proposed feature learning and
imbalanced learning methods, we implemented the SVM, ESM,
ESM-DW, ESM-UP and ESM-UP-DW detectors (described in
Section V.E2) with CVC-Colon and our datasets. From the com-
bined dataset, total 1642 polyp images were obtained. Based on
the 3-fold cross-validation, we evaluated the performance of de-
tectors in Figs. 13 and 14 (all with -PLS except
for Fig. 14(a)).
We use the same bandwidth factor for all the ex-

periments. Since the distribution of the confidence scores of
a detector is usually different for each test image, we use the
non-fixed , where is the minimum value of
the confidence scores of the image pyramid.
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TABLE III
PERFORMANCE COMPARISON WITH DIFFERENT FEATURES AND IMBALANCED LEARNING METHODS. THE PROPOSED FEATURE LEARNING AND IMBALANCED
LEARNING METHODS ARE MARKED WITH BLUE. FOR EACH METRIC, THE BEST RESULTS ARE MARKED WITH RED. IN EACH SUB-TABLE (A-D), THE

PERFORMANCE OF THE DETECTOR WITH THE HIGHEST PR-AUC IS HIGHLIGHTED

Fig. 13. Performance evaluation for different imbalanced polyp datasets. Miss rates against FPPIs of the detectors are plotted on a log-log scale. (a) With both
datasets, (b) With SET-LG, (c) With SET-SM.

1) Evaluation Using Different Datasets: Since we focus
on the classification with imbalanced datasets, we gener-
ated two training sets having different imbalanced ratios
between positive and negative samples at each cross-vali-
dation step:
• SET-LG: The imbalanced ratio is 1:10 (1000 positive (i.e.,
polyps) and 10000 negative (i.e., non-polyps) samples).

• SET-SM: The ratio is 1:100 (100 positive and 10000 neg-
ative samples). Note this dataset is more imbalanced and
contains fewer positive samples.

The performance of the detectors using different imbalanced
learning is compared in Fig. 13. Remarkably, the proposed
ESM-UP-DW achieves the best performance with the more

imbalanced SET-SM as shown in Fig. 13(a). Fig. 13(b) and
(c) also affirm that the performance of the ESM-UP-DW
is superior to others regardless of dataset sizes. Especially,
Fig. 13(c) clearly shows the performance gaps of the detectors
when using small positive samples (SET-SM). These evalua-
tion results prove that the proposed (up- and down-) sampling
methods make the imbalanced sets be rebalanced, and can
significantly improve the performance with only a tiny number
of positive samples.
2) Method Evaluation: To prove feasibility of the used

VHOG, we trained several SVM-based detectors using dif-
ferent features, and compared their performance in Fig. 14(a).
When extracting the VHOG [29], LBP [38], gray and color
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Fig. 14. For performance analysis of the proposed methods, we plot miss rates against FPPIs on a log-log scale. (a) Multi-feature, (b) The dimension of subspaces
of PLS, (c) The amount of overlap area, (d) PCA vs PLS, (e) Up-sampling, (f) Down-sampling.

histograms, we use the same cell size 15. For more eval-
uation, we further generated combined features with different
features and learned detectors using them.
As can be seen, the detector using the VHOG feature achieves

themuch better performance than using LBP, gray and color fea-
tures. By using the VHOG-Gray feature combination, we can
slightly improve detector performance compared when using
only the VHOG feature. However, extracting the multiple fea-
tures also increases computational complexity16. These compar-
ison results affirm that the VHOG feature is the most suitable
for polyp detection in consideration of both performance and
computation.
For determining the optimal dimension of the PLS matrix, we

trained several VHOG-PLS/SVM detectors with different PLS
dimensions and compared them in Fig. 14(b).We obtain the best
rate using the 7 dimension of PLS.
Fig. 14(c) compares the performance of VHOG-PLS/SVM

detectors trained with the different amount of overlap areas be-
tween positive and negative samples.When using negative sam-
ples overlapped with positive one less than 0.01, the detector
shows the best performance.
In Fig. 14(d), we use different subspace learning methods

(PCA and PLS) for ESM-UP-DW detectors. We also see that
employing PLS provides the better performance than PCA.
Fig. 14(e) compares performance of ESM-UP detectors learned
with different , the amount of up-sampling. The performance
is almost the same for , and 300 but decreased for

. It implies the proposed up-sampling is not sensitive

15VHOG, LBP and color histogram feature have the 1984, 3712, and 1536
dimensions as described in Section V.E1. We extract a 512-dimensional gray
feature after concatenating 8-dimensional histograms of 64 cells.

16In our experiment, running time of the detector using the VHOG feature is
almost two times faster that using the VHOG-Gray.

to , but too much oversampling can degrade the perfor-
mance since a detector is likely to be over-fitted. In Fig. 14(f),
the ESM-DW shows the slight performance improvement,
compared to ESM. However, exploiting down-sampling to-
gether with up-sampling can achieve the better performance
when comparing ESM-UP and ESM-UP-DW in Table III and
Fig. 13(c).
Some polyp detection results are shown in Fig. 15. There

exist many types of polyps in which they have different shapes.
In addition, some polyps are occluded and have very similar
colors and textures with other non-polyps. However, the pro-
posed ESM-UP-DW successfully detects the polyps. These
results also support the performance improvements of our
methods. Our polyp detector was implemented using MATLAB
on a PC with 3.07 GHZ CPU without parallel programming.
For each image, the total running time of the ESM-UP-DW
detector is about 0.6375 (sec/frame). When using one single
classifier, the computation cost can be greatly reduced by
almost 50%.

VI. DISCUSSION OF ADABOOST AND CASCADE SCHEME

It is worthy of note that a cascade scheme [40] can be also
applied to ensemble learning with imbalanced datasets instead
of Adaboost used for our work. In general, both schemes aim
at reducing the false positive rate while maintaining the high
detection rates. We compared their performance using the com-
bined dataset based on the 3-fold cross-validation as described
in Section V.F. We implemented a cascade polyp detector con-
sisting of 3 layers. At each layer, we trained a SVM classifier
using VHOG-PLS and then found its optimal threshold and
window size , which make the recall greater than 0.90%.
As shown in Table IV, Adaboost achieves a much higher rate.

The main reason is that they have different ways of aggregating
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Fig. 15. For CVC-Colon and our datasets, polyp detection results using the ESM-UP-DW detector trained with SET-SM are shown. More results can be found
in our supplementary material.

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT SCHEMES

scores of weak classifiers: In Adaboost, all test samples are eval-
uated by the learned classifiers and all the scores of them are
used when computing the final detection scores. On the other
hand, in the cascade, test samples are sequentially filtered out
by each classifier at each level. In other words, only remaining
samples after filtering out at the previous levels are evaluated at
the current level. Therefore, by usingAdaBoost, we can enhance
the overall accuracy by consideringmore decisions of classifiers
when aggregating scores.

VII. CONCLUSION
In this paper, we tackled an automated polyp detection

problem in endoscopic images. This problem is still challenging
because only a small amount of polyp samples is available
in spite of the diversity of polyps. For this reason, a polyp
dataset is usually prone to be imbalanced and learning with
the imbalanced dataset generates a classifier biased toward a
majority class. Another difficulty of the polyp detection is that
polyps and non-polyps have very similar colors and textures.
Therefore, it is difficult to discriminate between them using the
conventional features.
For learning an unbiased detector from the imbalanced

dataset, we proposed the data sampling-based boosting frame-
work with up/down sampling. As a result, we can learn
ensemble classifiers with the rebalanced dataset and use them in
order to detect different types of polyps. In addition, for better
discrimination, we proposed the effective feature learning
method using PLS analysis. Using the learned compact and dis-
criminative feature, we can improve the detection performance
while reducing the complexity.

The experimental results showed the enhanced performance
of the proposed detector, compared to other state-of-the-art
detectors. We further proved usefulness and effectiveness of
the proposed methods by implementing and comparing several
versions of detectors with different features and imbalanced
learning. We believe that the proposed methods can be appli-
cable to other detection problems and other applications such
as object tracking and classifications.
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