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ABSTRACT Generating realistic images with fine details are still challenging due to difficulties of training
GANs and mode collapse. To resolve this problem, our main idea is that leveraging the knowledge of an
image classification network, which is pre-trained by a large scale dataset (e.g. ImageNet), would improve
a GAN. By using the gradient of the network (i.e. discriminator) with high discriminability during training,
we can, therefore, guide the gradient of a generator gradually toward the real data region. However, excessive
negative feedback of the powerful classifier often prevents a generator from producing diverse images. Based
on the main idea, we design a GAN including the added discriminator and propose a novel energy function in
order to transfer the pre-trained knowledge to a generator and control the feedback of the added discriminator.
We also present an incremental learning method to prevent the density of the generator to be the low-entropy
distribution when training our GAN with respect to the energy function. We incorporate our method to
DCGAN and demonstrate the ability to enhance the image quality even in high resolution on several datasets
compared to DCGAN. In addition, we compare our method with recent GANs for the diversity of generated
samples on CIFAR-10 and STL-10 datasets and provide the extensive ablation studies to prove the benefits
of our method.

INDEX TERMS Generative adversarial network, image classification network, image generation, generative
model, deep learning, convolutional neural network.

I. INTRODUCTION
As a generative model, generative adversarial networks
(GANs) produce synthetic images by approximating a model
density pmodel(x) to a real data density pdata(x). In general,
a GAN consists of generator and discriminator networks.
The generator produces a synthetic sample G(z) for a given
input vector z with random noise, but the discriminator iden-
tifies between real and synthetic samples generated from
pdata(x) and pmodel(x). Both adversarial networks are trained
alternatively: the discriminator first learns to discriminate
between samples from data and model distributions. Subse-
quently, the generator learns to generate samples close to real
one by fitting its distribution to the real data distribution.
This adversarial learning progresses based on the basis of
Nash equilibrium [1], [2]. When the loss of GAN converges
toward a minimum, pmodel(x) is close to pdata(x), and the
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discriminator cannot distinguish between the two distribution
any more [1], [3].

In many cases, training GANs often fails due to mode
collapse and diminished gradient problems. To handle
this problem, improved object functions [4]–[7], learning
methods [2], [8], [9], and architectures [10]–[12] have been
developed. To avoid the mode collapse, dual discriminator
GAN [10] presents a loss function consisting of KL and
reverse KL divergences between data and model distribu-
tions. WGAN-GP [7] improves the loss of WGAN [6] by
penalizing the norm of gradient of the discriminator.

However, generating high-quality images in high resolu-
tion is still challenging since some local details of an object
aremore likely to be inaccurate or missed. As a result, the gra-
dients are drastically amplified because a discriminator easily
distinguishes between real and synthetic samples. In this case,
the variability of the generated images is also reduced since
a discriminator does not guide the generator to the diverse
region of the data distribution.
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In order to generate high quality and diverse image even in
high resolution, our main idea is to leverage the knowledge
of an image classification network. In general, a classification
network (e.g. ResNet [13] and DenseNet [14]) has high gen-
erality and classification accuracy since it was trained with
a large scale dataset (e.g. ImageNet). In general, the classi-
fication network is based on the deep architecture, and loses
the details of spatial information of object parts due to many
pooling operations [15], [16]. It means that it is likely to
classify an object image by looking into the existence of some
object details rather than the spatial locations. Therefore,
to fool the discriminator having high classification accuracy,
the image from a generator should contain the accurate local
details of an object or object parts.

In this paper, we design a new generative adversarial net-
work by incorporating DenseNet [14] into DCGAN [17].
However, the gradient divergence or mode collapse prob-
lems occur sometime when training our network using the
standard GAN loss function and learning algorithm [3]. This
is because the excessive negative feedbacks of the powerful
classifier prevent a generator from producing diverse images.
In other word, a generator is more likely to produce some
specific images which can deceive the discriminator.1

To resolve this problems, we propose a new GAN object
function to train the three players consisting of one generator
and two discriminators in an adversarial manner. We define
the loss of an added discriminator by including a scale factor
in order to control the feedback of this discriminator during
adversarial training. Furthermore, we present the incremental
learning method to train a generator step-by-step. We first
train both discriminator and generator of DCGAN by solving
the two-player minimax game. We then train the added dis-
criminator by minimizing the loss for real and fake samples.
When the three players optimized individually, we jointly
train both discriminators by maximizing the probabilities of
assigning the correct labels to both real samples and fake
samples of the generator. We simultaneously train the gen-
erator by maximizing the probabilities of both discriminators
over generated fake samples. As a result, we first use a soft
discriminator for learning basic image representation, and
then use the strict classifier for enhancing the representation
further.

We extensively evaluate our GAN method on sev-
eral datasets such as CIFAR-10 [18], STL-10 [19] and
CelebA-HQ [9]. We prove the ability of our GAN to generate
images in high resolution by comparingDCGAN. In addition,
we evaluate the inception score [20], [21] and Fréchet Incep-
tion Distance (FID) [22] to evaluate the quality and diversity
of the generated samples by our GAN compared to other
recent GAN methods. We also provide the ablation study to
prove effects of our learning method.

To sum up, the main contribution of this paper can be
summarized as follows:

1We discuss the impact of feedbacks of the added discriminator
in Sec. IV-E and Fig. 8.

• proposition of transfer learning to leverage the knowl-
edge of a pre-trained network for improving the image gen-
eration ability of GANs.
• proposition of a new GAN loss function and incremental

learning method for the transfer learning.
• analytic solution and theoretical analysis for the proposed

GAN loss function.
From the extensive comparison and ablation study as

shown in Fig. 4-9, we show the superiority of our method
compared to the recent GAN methods, and prove effects of
the proposed methods. In addition, we provide the experi-
mental results on CIFAR-100, and these results show that our
method is useful to improve the ability of generating diverse
images for many different categories.

II. RELATED WORKS
Unsupervised learning [23], [24] to learn general represen-
tations and relationship between samples of a dataset is an
important problem in machine learning. One of the pow-
erful approach for unsupervised learning uses deep neural
networks [1], [25]–[27]. In particular, the generative adver-
sarial networks (GANs) [3] show the promising results
among deep learning-based methods. GANs consist of two
neural networks for generation and discrimination, and
learn both networks simultaneously based on a minimax
two-player game. To make the GANs suitable for image gen-
eration more, [17] has extended GANs to the deep convolu-
tional GAN (DCGAN). By using the batch normalization and
replacing pooling layers with strided convolutions, DCGAN
mitigates poor initialization and gradient vanishing problems.

Moreover, GANs still suffer from mode collapse [2] and
training instability. As a result, it fails to achieve the diver-
sity of a data distribution. To address these problems, some
methods [4]–[7] have been developed. The common idea of
those methods is to improve the original GAN loss [3] by
inducing different distance measures between sample and
model distributions. Reference [4] derives the GAN training
objectives for all f -divergences, and applies a variational
divergence estimation method for GAN training with arbi-
trary f− divergences. In the least square GAN [5], the GAN
objective function is modeled with the least square loss,
and it is shown that minimizing the designed function is to
minimize the Pearson χ2 divergence. In Wasserstein GAN
(WGAN) [6], a GAN function is definedwith theWasserstein
distance which is the approximation of the EM distance.
To improve the training stability of WGAN further, [7]
adds a gradient penalty to constrain the gradient norm of
a discriminator. To train GANs for high resolution image
generation, [9] presents a progressive training method in
order to increase depths of networks step-by-step.

On the other hand, some methods use the multiple dis-
criminators for handling the mode collapse. Dual discrimi-
nator GAN (D2GAN) [10] extends the common two-player
minimax game to a three-player minimax game between
a generator and two discriminators, and shows that the
optimizing the generator is to reduce the KL and reverse
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FIGURE 1. The proposed IDGAN consists of a generator G, a discriminator D1 and an image classification network D2 pre-trained with ImageNet.
Given an input vector z disturbed by a random noise, G generates a sample image X̃ by G(z). D1 and D2 are trained with real samples x of a
training set and generated x̃. Then, D1 and D2 compute the losses Eq. (2) and gradients Eq. (3) for updating their parameters. From the feedbacks
of D1 and D2, the loss and gradients of G are computed by Eq. (2) and Eq. (4), and then parameters of G are updated with the gradients.

KL divergences together. Auxiliary classifier GAN
(AC-GAN) [12] for semi-supervisedGANs uses a pre-trained
classifier to predict sample labels, and maximizes the log
likelihoods for sample sources and class labels. Therefore,
when training GANs, AC-GAN uses sample labels as inputs
of the losses, whereas our IDGAN does not use them.
In addition, [28] defines a modified GAN loss to produce
samples in the low density area of the data distribution,
and uses the generated samples to train a more confident
classifier. In this paper, we also use multiple discriminators
for improving GANs. However, our method more focuses
on improving unsupervised GANs compared to other meth-
ods for enhancing semi-supervised GANs [12] and image
classification [28]. Generative Multi-Adversarial Network
(GMAN) [11] extends GAN to multiple discriminators.
In order to reduce the impact of too harsh a discriminator,
the ensemble method makes multiple discriminators pro-
vide uniform feedbacks to a generator. In addition, GAN
methods [10]–[12] focus on improving GANs by training
generator and discriminators from scratch rather than exploit
the transferred knowledge for GAN training.2

Although [29]–[33] present transfer learning methods for
GANs, our transfer learning method is different from those
works. A main difference is that they pre-train a generator
and a discriminator, whereaswe pre-train a discriminator only
with a source dataset. In addition, our GAN frameworks are
different from [29]–[33] because we use two discriminators
instead of using one discriminator. As a result, our method

2More discussions of GANs with multiple discriminators are given in
Sec. III-F.

can transfer the knowledge of source data to a target task
without pre-training a generator.

III. JOINT TRAINING WITH GANS AND IMAGE
CLASSIFICATION NETWORK
When source and target domains have some similarity, lever-
aging the pre-trained knowledge usually is beneficial for a
target task [34]. To apply this transfer learning for GANs, our
key idea is to leverage the precise feedback of an image clas-
sification network trained with a large dataset (e.g. ImageNet)
when learning a generator. Since the auxiliary discrimina-
tor has much higher classification accuracy than a common
discriminator in general, the generator should produce more
diverse and higher quality images to make the well-trained
discriminator fool. However, applying the conventional GAN
framework [17] and loss [1] for training these networks in an
alternative training manner,3 we found that the GAN perfor-
mance decreases as shown Fig. 3.

To resolve this problem, we present a new GAN loss and
theoretical analysis of the loss to show that optimizing a gen-
erator minimizes the Jensen-Shannon divergences between
a generator and discriminators. In addition, we propose the
incremental learning to learn a generator step-by-step with
the knowledge of discriminators. To this end, we first train
a standard GAN and an auxiliary discriminator individu-
ally, and train all networks jointly by maximizing and min-
imizing the proposed loss.4 In Fig. 1, we present a GAN

3It means that we alternatively train the pair of G and D1, and the pair of
G and D2 per iteration.

4Even though we can train networks jointly for our loss, the performance
is also degraded as shown in Table 3.
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framework (IDGAN) consisting of a generator (G), a discrim-
inator (D1), and an auxiliary discriminator (D2). Although
we represent D2 as the DenseNet-169 [14] can be any image
classification network.5

A. GENERATIVE ADVERSARIAL NETWORKS
In this section, we revisit the traditional GAN [3] before
discussing our methods. The GAN consists of generator G
and discriminator D. To learn the generator’s distribution
pG over data x, the generator G is defined as a mapping
function G(z; θG) that maps z sampled from a prior noise
distribution pz(z) to a point x in data space. The discrimi-
nator D(x; θD) outputs a probability that x cames from the
data rather than pG. Here, θG and θD are parameters of a
generator and a discriminator, respectively. G is trained to
minimize log (1− D(G(z))), and D is simultaneously trained
to maximize the probability of assigning the correct label
to both training examples and samples from G. As a result,
the generator and discriminator compete in the two-player
minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log (1− D(G(z)))] (1)

B. ADVERSARIAL LEARNING WITH KNOWLEDGE OF
IMAGE CLASSIFICATION
To exploit the feedbacks of both discriminators D1 and D2
for training G, we simply consider the discriminator D in
Eq. (1) as D1. Then, the loss function for G and D1 is Eq. (1).
Since D2 also outputs the probability of x comes from a real
sample as D1, we can similarly define the loss for G and D2
with logD2(x) and log (1− D2(G(z))) over training examples
x and samples z from G. However, at early training stage
the gradients of G could be led away from the data region.
A main reason is that G is still difficult to generate a sample
which can be regarded as ‘‘realistic’’ one by pre-trained
D2 with high discrimination accuracy. Thus, a generator is
likely to receive many negative feedbacks from D2. As noted
in [11], too many negative feedbacks guide the distribution
of G to the other regions of the data domain. In addition,
the number of negative feedbacks could be increased since
D1 also is likely to give the negative feedbacks as D1 gets
discriminative.

To alleviate this problem, our method is to build up the
generation ability of G with the feedbacks of D1 only, and
improves G with the feedbacks of D2 gradually. We present
more details of this learning method in Sec. III-D. Further-
more, we can reduce the feedback of D2 with a scaling
factor λ, where 0 < λ ≤ 1, and design a new loss function
for training G, D1, and D2 jointly as follows:

min
G

max
D1,D2

V (G,D1,D2)

= Ex∼pdata(x)[logD1(x)]

5The comparison of different D2 is given in Table. 3.

+Ez∼pz(z)[log (1− D1(G(z)))]

+Ex∼pdata(x)[logD2(x)]

+ λEz∼pz(z)[log (1− D2(G(z)))] (2)

We provide the comparison results with different λ
in Figure 3 and 7, and set λ to 0.6 in other evaluations.

From our loss Eq. (2), we present the following gradient
update equations of D1, D2, and G:

θd1 ← θd1 − η1∇θd1
1
m

∑
logD1(x)+ log (1− D1(G(z)))

θd2 ← θd2 − η2∇θd2
1
m

∑
logD2(x)+ log (1− D2(G(z))

(3)

θg ← θg − η1∇θg
1
m

∑
log (1− D1(G(z)))

+ λ log (1− D2(G(z))) (4)

where η1 is a learning rate of G and D1, and η2 is a learning
rate of D2. Note that λ is used only for updating G to reduce
the feedback of D2.

C. THEORETICAL ANALYSIS
For the proposed 2, we provide theoretical analysis. WhenG,
D1 and D2 have enough capacity (i.e. nonparametric limit),
optimal G can be found by minimizing both Jensen-Shannon
divergences between model pmodel and data pdata distribu-
tions. To proof this, we first find the optimalD∗1 andD

∗

2 given
a fixed G.
Proposition 1: Given a fixed G, the optimal D∗1 and D∗2

which maximize V (G,D1,D2) are

D∗1 =
pdata(x)

pdata(x)+ pG(x)
,

D∗2 =
pdata(x)

pdata(x)+ λpG(x)
(5)

Proof. By the induced measure theorem [10], we know
Ez∼pz(z) [f (G(z))] = Ex∼pG [f (x)], where f can be D1(x)
or D2(x). Then, the value function V (G,D1,D2) can be
represented as

V (G,D1,D2)

=

∫
x
[pdata(x)logD1(x)+ pG(x)log(1− D1(x))

+ pdata(x)logD2(x)+ λpG(x)log(1− D2(x))]dx

(6)

For the function 9(x) inside the integral, we can find
D∗1 andD

∗

2 tomaximize this function by setting the derivatives
of the function w.r.t D1 and D2 as

∂9(x)
∂D1

= 0⇒
∂9(x)
∂D1

=
pdata(x)

pdata(x)+ pG(x)
∂9(x)
∂D2

= 0⇒
∂9(x)
∂D2

=
pdata(x)

pdata(x)+ λpG(x)
(7)

Since ∂9(x)/∂D2
1 = −pdata(x)/D

2
1(x)− pG(x)/(1−D1(x))2

and ∂9(x)/∂D2
2 = −pdata(x)/D

2
2(x)− λpG(x)/(1−D2(x))2,
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the second derivatives are non-positive. Therefore, verifying
that Eq. (7) achieves the maximum solution and concluding
the proof.
Theorem 2: Given D∗1 and D

∗

2, the Nash equilibrium point(
D∗1,D

∗

2,G
∗
)
for the minimax game is achieved if and only if

pG = pdata. At that point, the minimum value is -log8.
Proof. By substituting D∗1 and D∗2 from (7) into the

object function Eq. (2) of the minimax optimization problem,
we have

V (G,D1,D2) = Ex∼pdata(x)

[
log

pdata(x)
pdata(x)+ pG(x)

]
+Ex∼pG(x)

[
log

pG(x)
pdata(x)+ pG(x)

]
+Ex∼pdata(x)

[
log

pdata(x)
pdata(x)+ λpG(x)

]
+Ex∼pG(x)

[
log

λpG(x)
pdata(x)+ λpG(x)

]
(8)

We can represent it with the Kullback–Leibler divergence as

V (G,D1,D2) = KL
(
pdata(x)||

pdata(x)+ pG(x)
2

)
+KL

(
pG(x)||

pdata(x)+ pG(x)
2

)
+KL

(
pdata(x)||

pdata(x)+ λpG(x)
2

)
+KL

(
λpG(x)||

pdata(x)+ λpG(x)
2

)
− log8

(9)

Also, we recognize this expression is the sum of the
Jensen-Shannon divergences between pdata(x) and pG(x) as

V (G,D1,D2) = 2 · JSD (pdata(x)||pG(x))

+ 2 · JSD (pdata(x)||λpG(x))− log8 (10)

These Jensen-Shannon divergences are nonnegative always
and zero only if two distributions are equal . Therefore,
we have proved that −log(8) is the global minimum of V
when pG = pdata and pG =

pdata
λ

. Since λ is a scaling factor,
the distribution of pdata is not changed by λ. Therefore, the
solution can be pG = pdata. In other word, the distribution
p∗G generated from a generator G is identical to the data
distribution pdata, and D1 and D2 fail to identify the real
and fake samples since both discriminators produce the same
score to 1/2 for any sample.

D. INCREMENTAL LEARNING
As mentioned in Sec. III-B, the excessive negative feedback
from discriminators is unlikely to guide the distribution of a
generator toward the data distribution. The negative feedback
is because a generator does not produce ‘realistic’ samples
which can mislead decisions of discriminators. Without the
sufficient training of G, the joint training of all the G, D1
and D2 degrades the inception score as shown in Table 3.

Algorithm 1 Proposed Incremental Learning

Input : Mini batch of noise samples {z(i)}mi=1 and
data samples {x(i)}mi=1

1 //Step 1 Training G and D1
2 for number of training iterations do
3 Update D1:
4 θd1 ← θd1 − η1∇θd1

1
m

∑
logD1(x)

5 + log (1− D1(G(z)))
6 for k iterations do
7 Update G:
8 θg← θg − η1∇θg

1
m

∑
log (1− D1(G(z)))

9 end
10 end
11 //Step 2 Retraining D2
12 for number of training iterations do
13 Update D2:
14 θd2 ← θd2 − η2∇θd2

1
m

∑
logD2(x)

15 + log (1− D2(G(z))
16 end
17 //Step 3 Jointly training of G, D1, and D2
18 Decrease η1
19 for number of training iterations do
20 Update D1:
21 θd1 ← θd1 − η1∇θd1

1
m

∑
logD1(x)

22 + log (1− D1(G(z)))
23 Update D2:
24 θd2 ← θd2 − η2∇θd2

1
m

∑
logD2(x)

25 + log (1− D2(G(z))
26 for k iterations do
27 Update G:
28 θg← θg − η1∇θg

1
m

∑
log (1− D1(G(z)))

29 +λ log (1− D2(G(z)))
30 end
31 end

Therefore, our main idea is that we first train G with the
feedback of D1 only, and then train G with feedbacks of both
D1 and D2. This incremental learning means that we first
teach the basic knowledge of generating samples to G with
the lenient D1, and improve the generation ability of G with
the knowledge of superior D2.
Figure 2 shows the overall procedure of our incremen-

tal learning. In the step 1, we train G and D1 using the
common adversarial learning [17]. In the step 2, we fine-
tune D2, which is image classification network (e.g. ResNet,
DenseNet). To this end, we alter the 1000 outputs of D2 with
2 units suitable for discriminating real and fake samples, and
re-train D2 from end-to-end learning with data samples and
generated samples fromG trained in the step 1. Subsequently,
the mature G is re-trained from the feedbacks of D1 and D2
using joint learning to expend its knowledge. We summarize
this incremental learning method in Algorithm 1.
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FIGURE 2. The proposed incremental learning method to extend the knowledge of G step-by-step. In the step 1, we learn
trainable parameters of G and D1 using adversarial learning with the loss Eq. (1), and fine-tune D2 with data samples and
generated samples from G in the step 2. In the step 3, all networks are trained together using Eq. (3) and (4).

E. NETWORK ARCHITECTURE
We present the network architecture for generating 256×256
resolution images based on the DCGAN. The dimension
of a latent vector z is 100, and each network consists of
a fully connected layer and 6 convolutional or deconvolu-
tional layers. G uses the ReLU as an activation function at
1-5 deconvolution layers, and the tanh at the output layer to
generate images. All deconvolutional layer use 5 × 5 filters
with 2 strides.

On the other hand, the discriminator uses the Leaky ReLU
(α = 0.2) as an activation function. At 1-5 convolutional
layers, convolutional filters with the size of 5× 5 filters and
2 strides are applied. At the last convolutional layer, we use a
sigmoid function.

When generating 32 × 32 low resolution images, we use
a 2 × 2 filter at the first deconvolutional layer of G, and
use 4 × 4 filters at the other layers. Also, 4 × 4 filters are
applied at 1-5 convolutional layers, but a 2 × 2 filter is used
at 6 convolutional layers.

We use DenseNet [14] or ResNet [13] as D2. They
show the impressive classification results by using skip
and dense connections. To use those as D2, we ran-
domly initialize the weights of the fully connected
layers while keeping the pre-trained weights of other
layers.

F. DISCUSSION: GANS WITH MULTIPLE DISCRIMINATORS
In this section, we discuss the differences of our IDGAN
and other GANs with multiple discriminators. Even though
IDGAN and D2GAN contain outputs of two discrimina-
tors in the loss functions, both loss functions are signifi-
cantly different since the usage of the additional discriminator
(D2) is different. In D2GAN, D2 is used to minimize the
reverse KL divergence. As a result, optimizing a generator
minimizes forward and reverse KL divergences in D2GAN.
On the other hand, our IDGAN exploits D2 in order to trans-
fer the pre-trained knowledge of D2 to a generator. There-
fore, optimizing a generator is KL divergences as shown in
Eq. (10). This means that global solutions between IDGAN
and D2GAN are clearly different each other.

Auxiliary classier GAN (AC-GAN) [12] also uses a
pre-trained classifier as an auxiliary classifier, but the
target domain is different with ours. They consider a
semi-supervised learning problem which generates images
with class labels, and use the labels as inputs of the loss
functions. On the other hand, our IDGAN considers an unsu-
pervised learning problem which generates images without
sample labels, and then our loss function does not use sample
labels as inputs. Therefore, the loss functions of our IDGAN
and AC-GAN are different since target problems are different
each other.
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FIGURE 3. The evaluations of different learning methods and loss functions on 2D mixtures of Gaussian distributions.
(a) Evaluation of different learning methods on mixtures of 3 Gaussian distributions. (b) Evaluation of different loss
functions on mixtures of 8 Gaussian distributions.

In addition, when using a trained classifier with accuracy
in GAN training, an excessive negative feedback from the
accurate classifier is one of the challenge problem in GAN as
mentioned in [11]. AC-GAN does not handle this problem.
In fact, GMAN [11] addresses this problem by combining
feedbacks of soft-discriminators and feeding the uniform
feedbacks to a generator. On the other hand, we resolve this
problem bymigrating the feedback ofD2 with a scale factor λ
and using our incremental learning efficiently. Therefore, our
IDGAN can use the knowledge of the powerful discriminator
for generator’s learning unlike GMAN. In Sec. IV-E and
Sec. IV-G, we have shown the effectiveness of our methods
to handle the excessive negative feedback.

IV. EXPERIMENTS
In this section, we prove the effects and benefits of our
methods on a synthetic 2D mixture of Gaussian, CIFAR-10,
CIFAR-100 [18], STL-10 [19] and CelebA-HQ [9] datasets.

When training G and D1, we use the Adam optimizer [35]
with β1 = 0.5 and β2 = 0.999. We set a learning rate to
0.0002. However, for training DenseNet-169 (D2) we use

the Nesterov momentum optimizer [36] with γ = 0.9. Here,
we set a learning rate to 0.1. We use the Tensorflow [37]. All
our experiments are conducted on aNVIDIATITANXpGPU
and an Intel Xeon E5-2640-v4 CPU.

A. DISCUSSION: ROLES OF D1 AND D2
Because D1 and D2 are heterogeneous for the architectures
and training manners, we presume that D1 and D2 differently
contribute to the G training. To find out the behaviors of G
over D1 and D2, we evaluate how well G trained with D1 and
D1&D2 can approximate the data distributions with several
modes.

For this evaluation, we generate synthetic samples from
two mixtures of Gaussians. We first generate mixtures of 3
Gaussian distributions with different means µ but the same
variance (0.012). As shown in Fig. 3, 40k samples are gener-
ated with µ = (0, 0), and 5k samples are produced with µ =
(0.2, 0.4) andµ = (−0.2,−0.4), respectively.G andD1 have
only a fully connected layer with 128 units, and use ReLU and
Leaky ReLU activations. For D2, we add 2 fully connected
layers. In the second Gaussian mixture dataset, 8 Gaussian
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TABLE 1. Comparison with other GAN methods: The inception and FID scores on CIFAR-10.

distributions with the variance 0.0052 are combined as in [2].
All the networks have one more fully connected layer com-
pared to previous evaluation. In addition, we train the IDGAN
without pre-training on other datasets.

Figure 3 compares different learning methods and loss
functions. In the first evaluation, our proposed method using
incremental learning approximates the Gaussian mixture dis-
tribution better than GAN [3]. When not exploiting incre-
mental learning, the data distribution for the low density is
also not captured. This evaluation shows that our IDGAN
with incremental learning is effective to make the generator
capture the multi modal distribution.

In the second evaluation, exploiting the GAN losses causes
the mode collapse problem. When using λ = 1, a few
modes are captured collapsed. This evaluation shows that our
IDGAN with proposed loss and learning method alleviates
the mode collapse problem because D1 and D2 differently
contribute to the G training. Furthermore, this evaluation
shows that reducing a feedback of D2 by using λ = 0.6 leads
to more stable training of G than using high λ. We provide
more details of the affect of λ in Sec. IV-E and Fig. 7.

B. EVALUATION METRICS
For quantitative evaluation, we adopt the inception score [20]
and Fréchet Inception Distance (FID) [22] as evaluation
metric. The inception score can evaluate generated images
of quality and diversity together. The inception score is
evaluated with the outputs (or probabilities for classes)
of a pre-trained Inception-v3 network [38] on ImageNet.
We define the inception score function IS(G) as follows:

IS(G) = exp (Ez∼pGKL(p(y|x)‖p(y))) (11)

p(y) =
∫
x
p(y|x)pG(x) (12)

The high inception score indicates that each generated
image contains a clear single object and generative model
should output high density of images for all classes of
ImageNet [20], [21].

A disadvantage of the inception score is that it does not use
the statistics of real world samples. To compare the statistics
of synthetic samples with those of real world samples, we

use the FIDmetric with the pre-trained Inception-v3 network.
FID uses the features from the last hidden layer, which is
the last pooling layer in general. m and mw are the means
of output features extracted from the synthetic and real data
samples, and C and Cw are the covariance of the output
features from synthetic and real samples. Using this statistics
Fréchet distance function d2 can be evaluated as follows [22]:

d2((m,C), (mw,Cw)) = ‖m− mw‖22
+Tr(C + Cw − 2(CCw)

1
2 ), (13)

where ‖·‖2 is the Euclidean L2 norm, and Tr(M ) is the trace of
a matrix (M ). The lower FID score means better performance
since a generative model captures more information for a
training dataset.

C. COMPARISONS WITH STATE-OF-THE-ART
GANS ON CIFAR-10 AND STL-10
In this section, we demonstrate that IDGAN improves the
image quality as well as image the diversity. As evaluation
metrics, we use the inception score [20] and Fréchet Incep-
tion Distance (FID) [22]. On CIFAR-10, CIFAR-100 [18]
and STL-10 [19] datasets, we generate images with unsuper-
vised learning. In the CIFAR-10 and CIFAR-100 dataset, 60k
images of the 32 × 32 resolution for 10 and 100 classes are
included, respectively. On the other hand, the STL-10 dataset,
which is a subset of ImageNet, contains 100k unlabeled
images. We resize images of STL-10 to 48 × 48 resolution
as done in other works [39].

For evaluating the quality and diversity of images pro-
duced by our IDGAN, we compare images from IDGAN
with those of DCGAN on CIFAR-10. Then, we compute the
inception score for 50k images generated from the IDGAN
and DCGAN. Subsequently, we implement ID-WGAN by
applying our architecture and incremental learning methods
for WGAN while maintaining its loss. To compare the differ-
ent normalization methods, we train our IDGAN with layer
normalization [42] (our GANs without the layer normaliza-
tion employ the batch normalization). On the STL-10 dataset,
we also generate images by using our IDGAN, and compute
the inception and FID scores to compare other methods.
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TABLE 2. Comparison with other GAN methods: The inception and FID scores on STL-10.

TABLE 3. Ablation experiments: The inception and FID scores on
CIFAR-10.

In Table 3 and 2, we compare our IDGANs with other
GANS. Compared to the DCGAN, IDGAN improves both
inception and FID scores for all the evaluations. In particu-
lar, the FID score is significantly improved. Since the FID
score measures the produced image quality, our IDGAN can
enhance the quality. When comparing between WGAN and
ID-WGAN, exploiting the auxiliary discriminator and our
incremental learning improves the scores. However, we verify

that our loss Eq. (2) is more appropriate for leveraging the
knowledge of the ImageNet discriminator when comparing
the results of IDGAN and ID-WGAN. The layer normaliza-
tion does not provide the score gain for our IDGAN in our
case.

In Fig. 4, we compare the inception scores per epoch. Even
though we can improve the scores with more training gradu-
ally, employing our loss and learning methods increases the
score more rapidly.

Compared to the state-of-the-art GAN methods shown
in Table 3 and 2, our IDGAN achieves the better perfor-
mance for both metrics than other methods. In particular, our
IDGAN produces the best FID score on the STL-10 dataset.

D. COMPARISONS WITH GANS WITH
MULTIPLE DISCRIMINATORS
To compare with the other recent methods using multiple
discriminators, we implement D2GAN [10] and GMAN [11]
using the public available official codes of both methods.6

However, both networks are implemented on the same archi-
tecture used in IDGAN. The details of the network architec-
ture are given in Sec. III-E. In our implementation, GMAN
uses 5 discriminators. We train the D2GAN and GMAN

6Code is available at https://github.com/tund/D2GAN, GMAN code is
available at https://github.com/iDurugkar/GMAN

FIGURE 4. On the CIFAR-10 dataset, the inception score curves per epoch at the step 3. At the step 1, we first train DCGAN and WGAN for 200 epochs.
At step 2, we train D2 (DenseNet-169) during 10 epochs. We then train all the GANs for 100 epochs at the step 3. (a) The inception score curves of IDGAN
and DCGAN. (b) The inception score curves of ID-WGAN and WGAN.
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FIGURE 5. On the CIFAR-10 and CIFAR-100 dataset, the inception and FID scores per epoch. We first train the IDGAN, D2GAN and GMAN for 300 epochs.
In the curves of IDGAN, the inception and FID scores before and after 200 epochs represent the IDGAN performance during step 1 and step 3,
respectively. (a) The inception score curves of IDGAN, D2GAN and GMAN on CIFAR-10. (b) The FID score curves of IDGAN, D2GAN and GMAN on CIFAR-10.
(c) The inception score curves of IDGAN, D2GAN and GMAN on CIFAR-100. (d) The FID score curves of IDGAN, D2GAN and GMAN on CIFAR-100.

during 300 epochs on CIFAR-10 and CIFAR-100, but train
them during 200 epochs on STL-10. For evaluation, we com-
pute the inception and FID scores of methods for 50k images
per epoch.

In Fig. 5, we compare IDGAN with D2GAN and GMAN
on CIFAR-10 and CIFAR-100. Note that the inception and
FID scores of IDGAN are shown after 200 epoch starting
out the step 3. Here, we verify that the performance can

FIGURE 6. On the STL-10 dataset, the inception and FID scores per epoch: We train IDGAN and GMAN for 200 epochs. In the curves of IDGAN,
the inception and FID scores before and after 100 epochs represent the IDGAN performance during step 1 and step 3, respectively. (a) The inception
score curves of IDGAN and GMAN on STL-10. (b) The FID score curves of IDGAN and GMAN on STL-10.
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TABLE 4. On several target datasets, inception and FID scores of IDGANs trained with different source datasets.

FIGURE 7. The inception scores of our IDGAN with different losses and λ
on the CIFAR-10 dataset.

be boosted further by this step. Compared to the D2GAN
and GMAN, our IDGAN show the better performance
in terms of both metrics. On CIFAR-100 including many
object classes, GMAN shows the impressive performance.

However, our IDGAN also achieves the similar FID score to
that of GMAN. In particular, the inception score of IDGAN
are much higher than that of GMAN. Remarkably, IDGAN
achieves the performance with 2 discriminators only while
GMAN uses 5 discriminators. This proves the effectiveness
and usefulness of our learning methods.

For the more comparison, we compare our IDGAN with
the GMAN on STL-10 in Fig. 6.7 Similarly, the inception
and FID scores after 100 epochs represent the performance
of IDGAN at step 3. On this dataset, our IDGAN shows
the better inception and FID scores than those of GMAN.
From these comparisons, we verify that the our main idea of
transferring the knowledge of image classification network to
GANs is indeed beneficial for image generation. In addition,
the proposed GAN framework, loss function, and incremental
learning are suitable for the transfer learning. Furthermore,
they make GAN scale up to generate images for many differ-
ent object classes.

7The implemented D2GAN is not trained well on this dataset.

FIGURE 8. On the CIFAR-10 dataset, the inception scores of IDGANs per epoch: We use the DenseNet-169 (Dense) and standard CNN (CNN) as
D2, and evaluate IDGANs by applying different scaling factor (λ = [0.6,0.9,1.0]) for the losses of D2. More discussion can be found in Sec. IV-E.
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FIGURE 9. On the CIFAR-10 and CIFAR-100 datasets, the inception and FID scores of IDGANs per epoch: We use the DenseNet-169 as D2 and evaluate the
IDGANs by applying these different transfer learning ways for D2. More details can be found in Sec. IV-F. (a) The inception score curves on CIFAR-10.
(b) PThe FID curves on CIFAR-10. (c) The inception score curves on CIFAR-100. (d) The FID curves on CIFAR-100.

E. ABLATION EXPERIMENTS
In this section, we evaluate the effectiveness of our proposed
loss function, learning method, and network architecture.
We first compare the different loss functions with a scaling
factor λ, where 0 < λ ≤ 1, as follows:
(L1) log (1− D1(G))+ λlog (1− D2(G))
(L2) (1− λ)log (1− D1(G))+ λlog (1− D2(G))
(L3) λlog (1− D1(G))+ λlog (1− D2(G))
(L1) is proposed one, (L2) is the sum of the factors for

D1 and D2 to be one, and (L3) applies the same λ for
both networks. We change λ ∈ [0.3, 0.4, . . . , 1.0]. Given
that G, D1 and D2 are trained by the step 1 and step 2,
we jointly train them with with the losses (L1)-(L3). Figure 7
shows the inception scores when different negative feedbacks
are fed to our IDGAN. As λ increases, the feedback of D2
affects the proposed loss (L1) more. When using λ = [0.9, 1]
for (L1), the inception score gets lower than using λ = 0.6.
(L2) and (L3) which controls feedbacks in different manners
also show much lower scores than (L1).

However, the effects of feedbacks of discriminators can be
different according to the accuracy of the discriminator. This
is because discriminators with high accuracy could provide
more strict and higher negative feedbacks to the fake images

generated byG. Therefore, we compare IDGANs with differ-
ent D2 as shown in Fig. 8. We use the DenseNet-169 (Dense)
and standard CNN (CNN) as D2. Here, we apply different
λ = [0.6, 0.9, 1.0] for the loss term of the Dense and CNN.

As can be seen, DenseNet-169 using λ = 0.6 (Dense 0.6)
shows higher inception scores than λ = 0.9 (Dense 0.9) and
λ = 1.0 (Dense 1.0). However, the score of standard CNN
using λ = 0.6 (CNN 0.6) is almost similar as those of λ =
0.9 (CNN 0.9) and λ = 1.0 (CNN 1.0). These results reflect
that the excessive negative feedback can be caused by a strict
discriminator, but not caused by a gentle discriminator. Also,
the excessive feedbacks can degrade GAN performance as
shown. However, our loss function can resolve this problem
by controlling the feedback of D2.

In addition, we change the D2 with other ImageNet net-
works. As shown in Table 3, using networks with deeper lay-
ers improves the metric scores, and we achieve the best rates
by using DenseNet-169 as D2. We also compare different
training methods in Table 3. Here, the joint training indicates
that G, D1 and D2 are trained simultaneously without the
previous learning of the step 1 and step 2 in Fig. 2. In the
alternative training, we trainGwith the feedback ofD1 orD2
alternatively at the step 3. From this comparison, we prove
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FIGURE 10. Generated 256× 256 resolution images by the DCGAN and IDGAN on the CelebA-HQ dataset. Each pair of images is generated by using the
same latent vector as an input.

that our incremental learning is much more effective for
IDGAN.

F. TRANSFER LEARNING
To show the effects of our transfer learning, we compare
the performance of our GAN with/without transfer learning
on several target datasets such as CelebA-HQ, CIFAR-10,
and CIFAR-100. On the CelebA-HQ evaluation, we use

the Inception-ResNet-v1 models trained on VGG-Face [43],
CASIA-WebFace [44], and ImageNet datasets8 as D2.
In addition, we use the DensetNet-169 model pre-trained
on ImageNet as D2 on CIFAR-10 and CIFAR-100. Table 4
shows the Inception and FID scores of our IDGAN with
the pre-trained models on the several target datasets. Since

8The models are provided from the FaceNet.
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the face class is not included in 1000 classes of ImageNet,
the inception score cannot be evaluated for CelebA-HQ.

On CIFAR-10 and CIFAR-100 sets, our IDGAN with the
pre-trained models shows the better scores than IDGAN
trained from scratch. In particular, the FID score dramati-
cally increases on CIFAR-100. However, the performance
of IDGAN does not increase on CelebA-HQ even though
we apply several Inception-Resnet-v1 networks trained with
different source datasets. From these experimental results,
we confirm that our transfer learning can be effective when
a target domain contains multiobject classes. In particular,
the more performance improvement can be achieved by our
transfer learning as object classes increase. However, in the
case of a single object class we consider that IDGANwithout
pre-trained D2 could provide the better performance than
using pre-trained D2.
To find out the best way when re-training D2 on a target

dataset, we train DenseNet-169 in different manners. Here,
it was pre-trained with ImageNet and consists of 1 fully con-
nected layer, 4 dense blocks and 1 convolutional layer above
the input layer from top to bottom. We re-train (FC) the fully
connected layer only, but (Dense4/Dense3/Dense3/Dense1)
from the fully connected layers to the indicated dense
block while remaining parameters of other layers. (No-
Pre) means that parameters of all layers are learned from
scratch. On CIFAR-10 and CIFAR-100, we evaluate the
IDGANs by applying these different transfer learning ways
for D2.

In Fig. 9, we compare the inception and FID scores of
the IDGANs per epoch. When comparing (No-Pre) and the
others, we find that our transfer learning is indeed bene-
ficial for improving GANs on both datasets In particular,
the performance gain from our transfer learning is much
higher in CIFAR-100 dataset. This means that our method
is more beneficial for the dataset containing diverse modes.
(Dense2) achieves the best inception and FID scores on both
datasets. This indicates that learning semantic features of
higher layers is also effective for transfer learning of GANs
while remaining generic features in lower layers.

G. EFFECTS OF DISCRIMINATORS D1 AND D2
To analyze the effects of D1 and D2, we should compare the
following IDGANs with different discriminators:
(G1) IDGANs with D1 and D2;
(G2) IDGANs with D1;
(G3) IDGANs with D2;
where (G1) is the IDGAN trained at step 3 as shown in Fig. 2.
(G2) is a GAN trained at step 1. In (G3), D2 is a pre-trained
discriminator on a dataset. In case of (G3), we however find
that G is not trained well. The reason is that the excessive neg-
ative feedback at early stage could guide the distribution of a
generator to the other data region as mentioned in Sec. III-B.

However, in order to compare (G1) and (G2) more clearly,
we evaluate the (G1) and (G2) performance per epoch on
CIFAR-10, CIFAR-100, and STL-10 as shown in Fig. 5-6.
Here, we evaluate the (G1) and (G2) performance in terms

of inception and FID scores. As can be seen, D2 indeed
contributes to the performance enhancement of IDGAN.

H. CELEBA-HQ EVALUATION
To show the ability of generating high resolution images of
our IDGAN, we use the CelebA-HQ dataset consisting of 30k
face images of 1024 × 1024 resolution. In our experiment,
we resized CelebA-HQ to 256 × 256 resolution. Therefore,
we design the network architecture as described in Sec. III-E.
However, we train our IDGAN without transfer learning
since it provides the better results as described in Sec. IV-F.
Figure 10 compares the generated images from DCGAN and
IDGAN. We also compute the FID scores of the DCGAN
and IDGAN. For 50k images, DCGAN and IDGAN achieve
49.97 and 32.08. From the results, we know that our IDGAN
generates more realistic images than DCGAN.

V. CONCLUSION
In this paper, we have proposed the IDGAN for improving
a GAN. IDGAN uses an image classification network as
an auxiliary discriminator. As a result, it can produce more
diverse and better quality image by using the knowledge of
the classification network. In order to train three networks
adversarially, we have designed the new loss function, and
provided the theoretical analysis to verify optimality of the
loss. For more stable training of IDGAN, we present the
incremental learning method to train the generator gradually.

From various evaluations, we have verified the effectives
and usefulness of the proposed methods. Compared to the
recent GANs, our IDGAN shows the better inception and
FID scores on CIFAR-10 and STL-10 datasets. In addition,
we show the image generation ability of IDGAN in high reso-
lution on the CelebA-HQ dataset.We believe that our loss and
learning method can be compatible with other GANs since
it does not depend on the GAN architecture. For instance,
we have implemented the improved WGAN with two dis-
criminators by adding the WGAN loss of the added discrimi-
nator. In a similar way, IDGAN uses two discriminators only,
but it can use more discriminators by adding the losses of
auxiliary discriminators.
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